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Abstract

Dynamic linear models were developed in engineering in the early
1960’s to monitor and control dynamic systems.Early famous appli-
cations have been in the Apollo and Polaris aerospace programs but
recently dynamic linear models, and more generally state space models
have received an enormous impulse with applications in an extremely
vast range of fields, from biology to economics.This paper will apply
a dynamic linear model for the task of prediction.More specifically a
dynamic linear model will be used to predict the closing price of an
exchange traded fund(ETF) called Financial Bull 3X(NYSE symbol:
FAS).

1 Introduction

In recent years there has been an increasing interest in the application of state
space models to time series analysis.These models consider a time series as
the output of a dynamic system with observable and unobservable states per-
turbed by random disturbances.State space models lend themselves to proba-
bilistic inference and the computations can be implemented as recursive algo-
rithms.In most cases probabilistic inference is carried out by computing the
conditional distribution of quantities of interest given the available informa-
tion and therefore are quite naturally treated within a Bayesian framework.A
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huge advantage of state space models is that they can be readily applied
to univariate or multivariate time series in the presence of non-stationarity
and irregular patterns.In this paper, I implement a random walk state space
model to predict the closing price for an ETF called Financial Bull 3X(NYSE
symbol:FAS).

2 Theory

2.1 The Bayes Rule

The Bayesian approach of learning from experience is done by computing the
conditional probability of the event of interest given the available informa-
tion.Given two events A and B,from the elementary rules of probability the
Bayes theorem or the theorem of inverse probability can be derived as

P (A|B) = P (B|A)P (A)
P (B)

.

Let us now apply the Bayesian framework to the problem of statistical
inference.Let the observation or the result of a sampling procedure be de-
scribed by the random vector Y .We would now like to build a parametric
model to describe Y ,the quantity of interest here is the vector θ of the pa-
rameters of the model.In this case Bayesian inference consists of computing
the conditional distribution of θ given the observations or the results from
sampling.From the Bayes rule this is computed by the formula

π(θ|y) = π(y|θ)π(θ)
π(y)

The conditional distribution π(y|θ) is called the likelihood,the distribution
π(θ) is called the prior and is used to express uncertainity about the param-
eter vector θ.

2.2 Application of Bayes rule

Let us assume that the observations or the results from sampling can be
modeled as

Yt = θt + εt (1)
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where εt ∼ N (0, σ2) and are independent and identically distributed(iid).

Now suppose we express our uncertainity about the parameter vector θ as
θ ∼ N (m0, C0), where m0 and C0 are the prior mean and variance respec-
tively.Uncertainity about the initial guess m0 can be modeled by choosing a
large C0.Now given the measurements y1:n we can update our belief about
the posterior distribution of θ using the Bayes rule.The posterior distribution
is given by

π(θ|y1:n) ∝ likelihood× prior

=
∏n

t=1
1√
2πσ

exp{− 1
2σ2 (yt−θ)2} 1√

2πC0
exp{− 1

2C0
(θ−m0)

2}

After some algebra the above expression evaluates to

exp{− 1
2σ2C0/(nC0+σ2)

(θ2 − 2nC0y+σ2m0

(nC0+σ2)
θ)}

and can be recognized as

θ|y1:n ∼ N (mn, Cn)
where

mn = E(θ|y1:n) =
C0

C0 + σ2/n
y +

σ2/n

C0 + σ2/n
m0 (2)

and

Cn = V ar(θ|y1:n) = (
n

σ2
+

1

C0

)−1 (3)

The posterior distribution can be computed recursively.We can update the
prior N (mn−1, Cn−1) on the basis of the observation yn.Using (2) and (3) we
get the resulting posterior as Gaussian with parameters

mn = mn−1+
Cn−1

Cn−1 + σ2
(yn −mn−1) (4)
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and variance

Cn = (
1

σ2
+

1

Cn−1
)−1 (5)

3 The model

In this section we introduce a model for the closing price of the FAS
ticker.The model is a simple univariate random walk plus noise model and is
defined by

Yt = µt + vt vt ∼ N (0, V ) (6)

µt = µt−1 + wt w ∼ N (0,W ) (7)

where Yt is the closing price of FAS at time t and µt is the value of the
unobservable process at time t.Here the errors Vt and wt are assumed to be
independent within and between themself.With this model in place we are
ready to start making predictions about the closing price of FAS.

Let us start with a normal prior N (25, 7) for θ ∼ N (m0, C0), N (0, 1) for the
vt’s and N (0, 14) for wt’s.The algorithm for prediction has three steps

• Initial updation step

• Prediction step

• Updating parameters step

Initial Updation step : From the results in section 2 when the first observa-
tion comes in at time t = 1,we update the parameters of θt as

m1 = m0 + C0

C0+σ2 (Y1 −m0)

C−11 = 1
σ2 + 1

C0

Prediction Step : Now we can predict the next closing price of FAS at t = 2
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based on the the equations (6) and (7).We also find that

θ2|y1 ∼ N (a2, R2)
where

a2 = E(θ1 + v + w2|y1) = m1 + v
and variance

R2 = V ar(θ1 + v + w2|y1) = C1 + σ2
w

We can also predict the next closing price of FAS (y2) given y1.Based on
equation (5) we find that

Y2|y1 ∼ N (f2, Q2)
where

f2 = E(θ2 + ε2|y1) = a2
and

Q2 = V ar(θ2 + ε2|y1) = R2 + σ2

Updating parameters : Now at time t = 2 the new closing price Y2 be-
comes available.We can now update the parameters for θ by computing the
posterior distribution θ2|y1:2.Thus by Bayes formula we get

θ2|y1, y2 ∼ (m2, C2)
where

m2 = a2 + R2

R2+σ2 (y2 − f2)
and

C2 = σ2R2

σ2+R2

with the role of the prior being played by the density N (a2, R2) and the
likelihood is given by the density of Y2 given (θ2, y1).Since Y2 is independent
from the past observations given θ2 the likelihood is given by

Y2|θ2 ∼ N (θ2, σ
2)

4 Results

The algorithm described in the sections above was implemented in R and
used to predict the closing price of FAS.The closing prices for 255 days were
predicted and at the end of the day the parameters for making future pre-
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Figure 1: Predicted vs Actual Closing prices of FAS.

dictions was updated.The results of the simulations are below and are self
explanatory.

5 Conclusion and Future work

From the results it can be seen that this method is quite good at making
predictions of the next days closing price of FAS.In order words, the method
seems to work well for making price predictions for time (t+1) given data upto
time t.Predictions for time (t+n) where n is a non zero integer can be made
based on the equations that specify the dynamics of the system.However, as n
increases these predictions will get worse.One area of future work is to be able
to make long term predictions without a significant decrease in the prediction
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Figure 3: Distribution of the prediction errors
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power.Another area of future work can be to predict intraday prices of FAS
and build a high frequency trading agent that can trade based on these
predictions in realtime.The problem though would have to be reformulated
as finding the parameters (θ) and then picking an action (a) at time (t)
that maximizes the conditional expected profit given the observed price of
FAS,the fixed transaction cost and the predicted value of FAS at time (t+n)
[E(P |y1:t, at, C, ypred(t+n)

)].

The model implemented here is a simple random walk model,going forward
we also plan to apply this method to more complex stochastic volatility
models with the hope of modeling the market dynamics and price changes as
close as possible to reality.

6 References

1. Petris, Petrone, and Campagnoli. Dynamic Linear Models with R.
Springer (2009).

10



 

  

 

 

 

 

 

Mu Sigma is a leading provider of decision sciences and analytics solutions, helping companies institutionalize data-driven decision 
making. We work with market-leading companies across multiple verticals, solving high impact business problems in the areas of 
Marketing, Supply Chain and Risk analytics. For these clients we have built an integrated decision support ecosystem of people, 
processes, methodologies & proprietary IP and technology assets that serve as a platform for cross-pollination and innovation. Mu 
Sigma has driven disruptive innovation in the analytics industry by integrating the disciplines of business, math, and technology in 
a sustainable model. With over 75 Fortune 500 clients and over 2000 decision science professionals we are one of the largest 
pure-play decision sciences and analytics companies. 
 
Learn more at http://www.mu-sigma.com/contact.html us for further information: 

Mu Sigma Inc., 3400 Dundee Rd, Suite 160, Northbrook, IL – 60062              www.mu-sigma.com  

© Copyright 2012 - 2013 Mu Sigma Inc. 
No part of this document may be reproduced or transmitted in any form or by any means electronic or mechanical, for any purpose without the express written permission of Mu 
Sigma Inc. Information in this document is subject to change without prior notice. 

 

http://www.mu-sigma.com/contact.html
http://www.mu-sigma.com/

